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A new method has been developed for predicting the load distribution along the thread
portion of a bolt and nut connection. The calculated results were validated by comparison
with three-dimensional finite element analysis and Yamamoto’s method. It was shown that
the load distribution predicted by the model in this paper was in good agreement with the
results from finite element model, and the load ratio on the first thread by the prediction
model and finite element model was slightly larger than the results from Yamamoto’s me-
thod. In addition, the results of calculation and finite element analysis indicated that the
decreasing of the lead angle could improve the load distribution, the increasing of the length
of thread engaged could significantly improve the load bearing capacity of the first thread,
and the adopting of a material with low stiffness for the nut with respect to the bolt could
improve the load distribution slightly.
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1. Introduction

The bolted joint is a typical connection that is widely used for construction of structures from
components. In order to ensure functionality of the joint, the load distribution in threaded
connections is of concern.

The load distribution in threaded connections has been studied since the beginning of the
century, but only a few of the most essential papers are referenced here (Goodier, 1940; Hetenyi,
1943; Motosh, 1975; Kenny and Patterson, 1985; Brutti and D’Eramo, 1987; Patterson and
Kenny, 1986). The Sopwith (1948) theory for predicting the load distribution of thread fasteners
is the most well known analytical model. The action of a number of strains is formulated by the
axial extension of the bolt and compression of the nut. These strains include bending deflection
of the thread, axial recession due to radial compression of the threads, and axial recession
due to axial contraction of the bolt and expansion of the nut caused by radial pressure of the
joints. Alternatively, Yamamoto (1980) proposed a procedure for calculating the deflection due
to bending moment, shear loading and radial contraction and expansion on the bolt and the
nut.

Due to the progress of the modern finite element method, the solution of contact problem
becomes possible by using finite element software. Grosse and Mitchell (1990), Wileman et al.
(1991), Lehnhoff and Wistehuff (1996), Chaaban and Muzzo (1991) and Chaaban and Jutras
(1992) studied stresses in threaded connections by axisymmetrical finite element models by
ASME Code. In order to investigate the helical effect on the thread connection, Chen and Shih
(1999) built a three-dimensional bolt-nut assembly by ABAQUS. But there was a small hole on
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the center of the bolt, which slightly reduced the area of the applied load. Moreover, Eraslan
and Inan (2010) built 3D finite element models of screws by Solidworks.

In order to achieve a more convenient prediction for the load distribution in screw threads,
we developed a new analytical model to calculate the load distribution in the thread connection.
Comparing the previous methods, especially Yamamoto’s method which includes five deflections,
there are only two main thread deflections in our method. In addition, we fully consider the
ununiformity of load distribution on thread and use unit deflection per unit width under unit
force. Meanwhile, a three-dimensional finite element model of the bolt-nut assembly is built to
validate the prediction method.

2. The new analytical model

According to Sopwith’s theory, the ISO triangle thread can be simplified into a cantilever beam
with a variable cross section. The strain in the thickness direction is considered to be zero,
namely, it is a plane strain problem. A coordinate system for the thread under axial concentrated
load is established. The length direction of the thread is the y-axis, the depth direction is the
x-axis, and the origin is located at the root of the thread, as shown in Fig. 1a. The original cross
section of the thread is a triangle. The semi-angle of the thread is α, the thread length is 2a,
and the pitch diameter is D, as shown in Fig. 1b.

Fig. 1. (a) Thread structure and coordinate system, (b) bolt structure

The geometric equation of the upper half of the thread is

y = a− kx (2.1)

where k = tanα and α = 30◦.

The geometric equation of the lower half of the thread is

y = kx− a (2.2)

The moment of inertia of one thread is

I(x) =

∫∫

S(x)

y2(x) dS =
2πD

3
(a− kx)3 (2.3)
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where a = kh, h is depth of the thread (as shown in Fig. 1a), therefore

I(x) =

∫∫

S(x)

y2(x) dS =
2πD

3
k3(h− x)3 (2.4)

2.1. The elastic deflection of thread

According to Sopwith’s theory, the thread under axial loading will deform due to several
reasons. Owing to the above assumption, these deflections mainly include bending and shearing
deflection of the thread. An ISO triangle thread can be seen as a cantilever beam under a
concentrated load P at x = l1, which is shown in Fig. 2. The bending deflection δ1 and shearing
deflection δ2 along the axial direction at x = l1 can be obtained by the following functions.

Fig. 2. Bending deflection and shearing deflection

2.1.1. The deflection due to bending moment

For a thread shown in Fig. 2, according to the theory of mechanics of materials, the static
bending equation is

EI(x)
∂2w

∂x2
= P1(l1 − x) x < l1 (2.5)

where P1 is the axial force on one thread, I(x) is the moment of inertia, l1 is the distance from
the action point of the force to the root of the thread, E is Young’s modulus and w is the
bending deflection. Substituting Eq. (2.4) into (2.5) leads to

∂2w

∂x2
=
3P1
2πDEk3

l1 − x

(x− l)3
x < l1 (2.6)

where l is height of the thread as shown in Fig. 2.
Primary integration of Eq. (2.6) is conducted in accordance with the assumption that the

deflection angle at the root of the thread is zero, i.e., the boundary condition ∂w/∂x = 0 at
x = 0 and the deflection angle can be expressed as

∂w

∂x
=
−3P1
2πDEk3

( 1

x− l
+
l − l1
2(x− l)2

+
1

l
−

l − l1
2l2

)

x < l1 (2.7)
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Primary integration of Eq. (2.7) is conducted on the assumption that the displacement at
the root of the thread is zero, i.e., the boundary condition w = 0 at x = 0 is

w =
−3P1
2πDEk3

[

ln
l − x

l
−

l − l1
2(x− l)

+
(1

l
−

l − l1
2l2

)

x−
l − l1
2l

]

x < l1 (2.8)

Under the unit force, the bending deflection of one thread at x = l1 is

δ1 =
−3

2πDEk3

[

ln
l − l1
l
+
1

2
+
(1

l
−

l − l1
2l2

)

l1 −
l − l1
2l

]

(2.9)

Because the deformation of thread is treated as a plane deformation, under the unit force, the
unit deflection due to bending moment can be expressed as

δ1 =
−3(1 − ν2)

2πDEk3

[

ln
l − l1
l
+
1

2
+
(1

l
−

l − l1
2l2

)

l1 −
l − l1
2l

]

(2.10)

2.1.2. The deflection due to shear loading

At x = l1, the shear stress for the thread can be expressed as

τ(x) =
P1
πD

1

2(a− kx)
(2.11)

Therefore, the shearing deflection of one thread should be

∆(x) =
τ(x)

G
L (2.12)

where the L is total length of the thread as shown in Fig. 1b.
The shearing deflection of the unit length (L ≡ 1) is

δU (x) =
τ(x)

G
(2.13)

where G is shear modulus, and G = E[2(1 + ν)]. Therefore, the unit shearing deflection of one
thread under the unit force (P1 ≡ 1) can be expressed as

δ(x) =
1 + ν

EπD

1

a− kx
(2.14)

According to the boundary condition δ(x) = 0 for x = 0 and δ(x) = δ2 for x = l1, integration
of Eq. (2.14) leads to

δ2 =
1 + ν

EπD

l1
∫

0

dx

a− kx
=
1 + ν

kEπD
ln
a

b
(2.15)

According to Yamamoto (1980), the load P is located at the center of the original triangle
of the thread, namely

l1 =
1

2
l b =

1

2
a (2.16)

Therefore, for the bolt and nut under the unit force, substituting of Eqs. (2.16) into Eqs.
(2.10) and (2.15), respectively, the elastic deformation of unit length thread in the direction of
the helix is

δb = δ1b + δ2b =
0.5(1 − ν2b ) + 1.2(1 + νb)

πDEb

δn = δ1n + δ2n =
0.5(1 − ν2n) + 1.2(1 + νn)

πDEn

(2.17)
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where δ1b and δ2b represent the bending and shearing deflection of bolt, respectively, δ1n and
δ2n represent the bending and shearing deflection of the nut. For the ISO triangle thread, there
is k = tan 30◦. For the threaded connection structure composed of the bolt and nut, the total
elastic deformation of the unit length thread in the direction of the helix is

δy = δb + δn (2.18)

where δb and δn represent the total deflection of the bolt and nut, respectively.

2.2. Thread stiffness

For the thread on the bolt, the stiffness of the unit length thread under the unit force in the
direction of the helix is

kbu =
1

δb
(2.19)

Because the total length of the thread is πD, the total axial stiffness of the thread on the
bolt under the unit force is

Kb = πDkbu =
πD

δb
(2.20)

Similarly, for the thread on the nut, the stiffness of the unit length under the unit force in
the direction of the helix is

knu =
1

δn
(2.21)

The thread stiffness of the thread on the nut under the unit force is

Kn = πDknu =
πD

δn
(2.22)

If one thread is considered to be a spring, the threaded connection that consists of several
threads is a parallel spring. Thus, for the bolt, the total stiffness of n thread is nKb. If the pitch
is p, then the stiffness of the unit axial length under the unit force is regarded as

kby =
Kb
p
=
πDkbu
p

(2.23)

If the lead angle of the helix is β, then tan β = p/(πD). For the bolt and nut, the stiffness
of the unit axial length under the unit force is respectively

kby =
kbu
sin β

=
1

δb
sin β kny =

knu
sin β

=
1

δn
sin β (2.24)

For the threaded connection structure composed of the bolt and nut, the total stiffness of
the unit axial length is

ky =
1

1
kby
+ 1
kny

=
1

(δb + δn) sin β
=

1

δy sinβ
(2.25)

Because the stiffness is the ratio of the force to deflection, the axial deflection of the thread
body is

∆y =
1

ky

∂P

∂y
(2.26)

where ∂P/∂y is the axial force on the unit length thread. The preceding equation indicates that
the axial deflection of the thread body varies directly with load distribution.
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2.3. Axial load distribution in threaded connection

Figure 3 shows that the threaded connection structure includes a fixed nut body and a bolt
body. In the bolt body under a compressing force fB, the force will be transferred to the nut
body through the threads. The structure is elastic. Thus, the bolt body, the nut body or the
thread body will exhibit deflection under the force. However, the forms of forces on the bolt body
and the nut body differ from those on the thread body. Furthermore, their load distributions
also vary. Thus, the deformation modes of the bolt body and the nut body differ from those of
the thread body. However, the bolt body and the nut body are joined by the thread body. Thus,
their deformations are compatible.

Fig. 3. Threaded connection structure

The region of the compressing force on the thread body ranges from 0 to l, where l is the
engaged length of the bolted joint. Thus, the strain εb generated by the bolt body under the
compressing force f(y) at the location y is

εb =
f(y)

SbEb
(2.27)

where Sb is the cross-sectional area of the bolt body.
Similarly, strain εn generated by the bolt body under the compressing force f(y) is

εn =
f(y)

SnEn
(2.28)

where Sn is the cross-sectional area of the nut body.
For the thread body, the load f is distributed along the direction of the helix and along the

axial direction y. The thread deformation analysis indicates that the deflection and displacement
of threads on the bolt body is related to the gradient of force distribution, i.e.,

δb =
1

kby

∂f

∂y
(2.29)

Similarly, the deflection of the thread body on the nut body is

δn =
1

kny

∂f

∂y
(2.30)
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Their displacement gradients are respectively

∂δb
∂y
=
1

kby

∂2f

∂y2
∂δn
∂y
=
1

kny

∂2f

∂y2
(2.31)

In order to make the deformation compatible, εb, εn, δb and δnmust meet the following
relationship

εb + εn =
∂δb
∂y
+
∂δn
∂y

(2.32)

Substitution of Eqs. (2.27), (2.28) and (2.31) into Eq. (2.32) leads to

λ2f =
∂2f

∂y2
(2.33)

where

λ =

√

√

√

√

1
SbEb
+ 1
SnEn

1
kny
+ 1
kby

The solution to Eq. (2.32) is

f = C1 sinhλy + C2 cosh λy (2.34)

By the boundary conditions f(y) = fB for y = 0 and f(y) = 0 for y = l, we can obtain

C2 = fB C1 = −
coshλl

sinhλl
fB

Substituting C1 and C2 into Eq. (2.34) leads to

f(y) = fB
(

−

coshλl

sinhλl
sinhλy + cosh λy

)

(2.35)

where fB is the load on the first thread of the bolt. The load along the axial direction y can be
calculated by Eq. (2.35). This distribution is more precise than Yamamoto’s method because we
considered the load distribution along the helix of the screw.

3. Finite element model

A group of ISO metric screw threads M36 are used to study the load distribution and the effect
of pitch, material and length of the thread engagement. The parameters of all screws are listed
in Table 1. Commercial finite element software ANSYS is used for modeling and analysis. The
model geometry is meshed by 8 node hexahedron elements (SOLID185). The contact and target
elements are TARGE169 and CONTA172, respectively. The friction coefficient changes between
0.15 0.2 according to the material of the thread. Figure 4 shows 3-D finite element models of the
standard bolt assembly and the stress distribution on the screw under the external load. There
is no sliding between the bolt and nut threads because friction coefficients are large enough to
prevent sliding. In the models, the axial loading is applied to the top surface of the bolt, and
the outer bottom surface of nut is assumed fixed. Convergence study is carried out on the initial
finite element model by decreasing the element size near the threads. The smallest element size
is 0.25mm by 0.25mm and the total number of element is about 80000. There is no significant
improvement in the accuracy by using smallest elements.
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Table 1. Parameters of the thread

Speci- Nominal diameter Pitch
p
[mm]

Engaged length
Materials

men of thread of bolted joints
No. d [mm] l [mm] bolt nut

1 36 4 28

steel steel

2 36 3 28
3 36 2 28
4 36 1.5 28
5 36 4 24
6 36 4 20
7 36 4 16
8 36 4 12

9 36 4 28 steel copper

10 36 4 28 steel brass

11 36 4 28 steel aluminum

12 36 4 28 aluminum steel

Fig. 4. 3-D model mesh of standard threaded connection: (a) bolted joint assembly, (b) bolt, (c) contour
plot of the screw stress
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Table 2. Parameters of material

Material
Young’s modulus Poisson’s ratio Density
E [GPa] ν [–] ρ [kg/m3]

Steel 211 0.269 7890

Copper 137 0.310 8980

Brass 105 0.320 8500

Aluminum 69 0.330 2700

An elastic material is used throughout this work. A uniform pressure loading p is applied to
the top root surface of the bolt. So, the total force due to the applied pressure can be expressed
as

fB = p
πd2

4
(3.1)

where d is the nominal diameter of the bolt.

4. Result and discussion

For thread No. 1, the result of the load distribution on each thread by Yamamoto’s method,
finite element model and the prediction model developed in this paper can be shown in Fig. 5.

Fig. 5. The load ratio on each thread for bolted joints No. 1

Figure 5 shows that the load distribution obtained from the model in this paper are in a close
agreement with the finite element analysis. It is a load corresponding to the pitch section of the
thread. The load distribution with prediction from the analytical model and finite element model
is shown to be slightly larger than the results of Yamamoto’s method. For the FEM calculation,
the axial component of stress is utilized for the load on thread and the load ratio is the ratio of
the load on thread to the load on the surface of the bolt. The load on thread can be calculated
by equation (2.32) for the prediction model, and it is the average value of some element (all
the elements along the thread edge) for the FEM calculation. From the figure, we can see that
the loading ratio is quite similar on each thread in the case of the analytical model and finite
element model for all specimens.
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There are four pitches which have been used in this Section, namely 4mm, 3mm, 2mm,
1.5mm, and the corresponding lead angles are 2.1804◦, 1.6068◦, 1.0511◦, 0.7810◦, respectively.
The load ratio of the prediction model in this paper with different pitch in Fig. 6 shows that
the decreasing of the pitch can improve the load distribution and reduces the load bearing on
the first thread.

Fig. 6. The load ratio on each thread for bolted joints No. 1, 2, 3, and 4

Figure 7 is the load ratio of the prediction model and finite element model with length of
thread engagement 28mm, 24mm, 20mm, 16mm, 12mm, respectively. The figures show that
the load ratio is modified greatly with the increasing of thread engagement length. And the
longer the length of thread engagement, the smaller the load bearing on the first thread. But
when the length is more than 20mm, the effect is very slight.

Fig. 7. The load ratio on each thread for bolted joints No. 1, 5, 6, 7 and 8

In addition, when Young’s modulus the of bolt Eb is larger than that of the nut En, the load
distribution is improved slightly. The calculation result by the prediction model for specimens
No. 1, 9, 10, 11, 12 whose bolts and nuts are made of different materials, are shown in Fig. 8.
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Fig. 8. The load ratio on each thread for bolted joints No. 1, 9, 10, 11 and 13

5. Conclusions

The load distributions on the thread connection by the analytical model and finite element
model have been studied. The results can be concluded as follows.

1. The load distributions obtained from the model in this paper are in good agreement with
finite element analysis and Yamamoto’s method.

2. The results of the analytical model in this paper are nearer to the finite element analysis
than Yamamoto’s method, because we considered the load distribution along the helix of
the screw.

3. The effect of pitch on the load distribution of the threaded assembly is very obvious. A
decrease in the pitch not only can improve the load distribution, but also can reduce the
load ratio in the first thread.

4. The load distribution of the first thread is significantly decreased by a properly increased
length of the thread engagement.

5. Adopting a material with low stiffness for the nut with respect to the bolt can improve
the load distribution slightly.
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